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The reaction graphs for systematic and unambiguous representation of classes of reactions are 
suggested. This concept offers very simple and transparent method to analyze the complicated 
reaction schemes form the standpoint of their mechanistic realization. It is demonstrated that the 
reaction graphs can be used also for the canonisation of chemical reactions. 

A mathematical model of organic chemistry should cover the following two aspects: 
First, the static aspect of organic chemistry, i.e. the description of molecular topo­
logy. In our graph-theory approach l - 2

, the molecules are represented by multi­
graphs with loops, where the vertices are evaluated by atomic symbols. Second, 
the dynamic aspect corresponds to those phenomena that are called -the chemical 
reactions ( or transformations). A molecular system (composed of one or more mole­
cules) is transformed onto another molecular system, both these systems are repre­
sented by isomeric molecular graphsl. Initially, we have introduced the so-called 
reaction operator!, its action on a substrate molecular graph produces an product 
molecular graph. Its matrix representation is closely related to the reaction matrix 
of Dugundji and Ugi model of constitutional chemistry3. 

The purpose of the present communication is to suggest the reaction graphs (RGs). 
In fact, this concept is nothing else than a graph-theory representation of the 
above-mentioned reaction matrices. In contrast to the original reaction-matrix 
method, the RGs are of great heuristic and classification importance. This is obvious, 
the clumsy considerations with matrices are effectively substituted by the con­
siderations with the corresponding graphs with very simple and transparent "topo­
logy". Moreover, the RGs make possible to canonize the chemical reactions and 
their directions. Recently, the canonisation problem of reaction matrices was studied 
by Brandt and coworkers4

• Their canonisation process is relatively very time-con-
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suming, it needs to check all the permutations whether or not a permutation produces 
a string classified as greatest. Our approach is fully based on the graph-theory COIl­

cepts and notions. The string notation of RGs simply follows from the existence 
of the so-called Euler alternating walks , their total permisible number is much smaller 
than the number of all column-row permutations in the reaction matrix. 

The graph theory has been used in the enumeration problem of chemical reactions 
by Balaban and coworkers 5

, Sinanoglu 7
, and Nemes and coworkers6

. 

REACTION GRAPHS 

Let us have a pair of isomeric! molecular graphs (MGs) G1 = (V, E 1 , L 1 , cp, 'll) 
and G2 = (V, E2 , L2 , cp , 'll). Formally, postulate that the MG G1 (G 2 ) corresponds 
to an educt (product) molecular system, then we would like to trea t within the pure 
graph-theory formalism the following " chemical" transformation process. 

(1) 

Applying the concept of the sum of graphs (see Appendix), these two MGs may be 
mutually related as follows 

(2) 

where the graph G is determined by (A4) and (AS). The edges and loops from G 
are evaluated with the respect to the transformation (1) by the surjective mapping ,/I , 

1/1 : E -+ { -1, + I} , (3a) 

I/I:L-+{-l , +I}, (3b) 

i.e. each edge/loop for G is evaluated by the integer + 1 and -1, respectively. In order 
to specify the mapping 1/1 we use the following defining relations 

{-I (ifeEE1), 
(4a) I/I(e) = 

+1 (if e E E2 ) , 

1/1(1) = {-1 (if I ELI) , 
(4b) 

+1 (if I E L 2 ) • 

This has been done in accordance with the usual conventionl, an edge/loop anni­
hilated (created) in a course of the process (1) is evaluated by the integer -1 ( + 1). 
Hence, the reaction graph assigned to the process (1) is determined as an ordered 
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5-tuple 

R = (y, P, L, 1/1, {-1, +1} ), (Sa) 

where 

(5b) 

and V £; V is composed of those vertices that are incident with edges/loops from E 
and L, respectively. Finally, the process (1) is now represented by 

(6) 

The reverse transformation process 

(7) 

is expressed by a similar graph-theory "equation" 

(8) 

where the reaction graph R is almost identical with the original R, but now the cor­
responding mapping lfi is simply determined by lfi = -1/1. The reaction graph R 
is determined as the ordered 5-tupel 

R = (Y, P, L, lfi, { -1, + I}) . (9) 

The RGs Rand R are different only in the evaluation of edges and loops, these 
entities are evaluated in R by the opposite sign interges already used in R. 

The reaction matrix! of a reaction graph R is a square symmetric matrix R, the 
rows and columns of which are labeled by the vertices of the RG, the element being 
determined by 

r ii = (the multiplicity! of the loop 

[i, iJ) x I/I([i, iJ) , 

r/ = (the multiplicity of the edge 

[i, jJ) x I/I([i, jJ) . 

(1Oa) 

(lOb) 

This relatively abstract definition of entries of R has the following simple interpreta­
tion 
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rjj = the number of loops created (rii < 0) 

[annihilated (rjj < O)J incident with 

the ;-th vertex, 

r/ = the number of edges created (r/ < 0) 

[annihilated (r / < O)J incident with 

the i-th and j-th vertices. 

2287 

Now, using the concept of the reaction matrix, we give the second alternative deter­
mination of the RGs Rand R, 

R = (Ji, R) and R = (V, - R) , ( 11) 

where the reaction matrices R and - R are simply related by 

(12) 

Since the MGs G1 and G2 are isomeric, the total numbers of created and annihilated 
edges/loops in the corresponding RG are exactly balanced , this requirement im­
mediately implies 

M = P = 2n, (13a) 

M( +) + p( + ) = M( - ) + p(-) = n, (13b) 

for an integer n = 1,2, . .. . The entries Man Pin (13a) are the total number of edges 
and loops, respectively, in the reaction graph R, 

M = III and P = ILl , (14) 

and the relations 

(i5a) 

P = p( + ) + p( - ) , (I5b) 

are their splitting into the parts of edges/loops with + 1 and -1 evaluations, respec­
tively. 

The individual vertices appearing in RGs assigned to a "realistic" chemistry are 
presented in Fig. 1. The number of edges (loops) incident with a given vertex is 
denoted by ne (n 1), this integer is called the edge (loop) degree (related to the vertex). 
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The total degree n = nc + 11) of the vertex can be simply split as /1(+) + n( -1, 

where n( +) and n( - ) correspond to the total number of edges and loops evaluated 

by + 1 and -1, respectively. In our "realistic" chemistry we shall consider only those 
vertices that are satisfying the following two testrictions (Fig. 1) 

(16a) 

(16b) 

We consider only the vertices (atoms) for which , at most, two edges (bonds) are 
created and /or annihilated . 

In general, an arbitrary graph must contain either none or an even number of verti­
ces of the odd edge degree. The same should be satisfied also for the RGs, these 
vertices of the odd degree are appearing in chemical transformations in which the 
charged atoms contribute in a formation /break of bonds with simultaneous change 
of their valences. Therefore, we restrict the possible form of RGs: The reaction 
graphs are composed either of none or, at most, two vertices of the odd edge degree. 
For our forthcoming considerations will be very worthwhile to discuss only the 
chemical transformations that are expressed by connected RGs. It means, we study 
only tIle chemical transformations of two isomeric MGs for which it is impossible 
to separate this process in two or more elemental' processes. In the opposite case, 
if the RG is disconnected (i.e. it contains two or more components that are not 
linked by an edge), the transformation process is separated in a clas.s ()f independent 
transformations. 

Summarizing, the RGs corresponding to "realistic" chemical transformations 

--- + - + --=--<V -±-....o 
(1) (1) (2) c3) (3) 

>-<v ~ ~ ~ X 
(4) + (4) (5) (5) (6) 

~ ~ 
(7) (7) 

FIG. 1 

The vertices of a reaction graph that are satisfying the conditions (l6a) and (l6b) 
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satisfy the following two requirements , where the first one is postulated to achieve 
a considerable simplification of the present theory (but still covering both real and 
important chemical transformation), and the second one means that we merely study 
the chemical transformations between two isomeric MGs: 

(i) A reaction graph is connected and composed of only vertices listed in Fig. 1, 
where either none or, at most , two vertices of the odd edge degree are used. 

(ii) A reaction graph contains an even total number of edges and loops [Eq. (13a)], 
and furthermore , the total numbers of edges and loops evaluated by -1 and + 1, 
respectively, are equal [Eq. (13b)J. 

In the forthcoming di scussions under the term "reaction graph" we shall automatical­
ly understand a RG satisfying both the requirements. 

In order to suggest a proper and transparent classification scheme of RGs we intro­
duce the following concept : An Euler alternating walk (EA W) on a RG is a sequence 
of subsequently incident edges/loops with alternating edge/loop evaluation (for 
uniqueness we postulate that the fir st edge/loop is evaluated by -1), and it contains 
all the edges and loops exact ly ones. In a closed EA W the initial and terminal vertices 
coincide, an open EA W is not closed. An EA W is represented by oriented walk 
(this is achieved by requiling that the first edge and loop, respectively, must be 
evaluated by the integer -1) which visits all the edges and loops exactly ones, the 
vertices may be intersected by the walk , in general , more than one. The following 
very important property of RGs is satisfied 8

: 

Theorem. (1) A RG contain a closed EA W if and only if it contains the vertices 
of even edge degree. 

(2) A RG contains an open EA W if and only if it contains exactly two vertices 
of odd edge degree, the EA W then starts and ends at these two vertices. 

In general, one can obtain for a RG many different EA Ws, we shall solve the very 
serious problem to canonize these alternative posibilites. Simultaneously, we canonize 
also the direction of the chemical transformation (1) and (7), that is we formally 
classify the direction in these two alternative possibilities (1) and (7) as the canonical 
direction. 

Let us have a vocabulary m3 composed of fully ordered symbols, for simplicity, 
this vocabulary is identified with some part of Roman alphabet, 

m3 = {I < J < K < L .•. } . (17) 

An arbitrary EA W is unambiguously expressed via a finite string of symbols belong­
ing to the vocabulary (17). As was mentioned above, an EA W is uniquelly deter­
mined as a sequence of all edged and loos, these edges/loops are subsequently inciden-
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mined as a sequence of all edged and loos, these edges/loops are subsequently is 
with their common vertices. Going successively through all these vertices we get 
a sequence of vertices unambiguously determining the given EA W. The obtained 
sequence of vertices may be alternatively expressed by a string constructed over 
the vocabulary lID, it contains 2n + 1 symbols. In particular, traversing the EA W, 
the vertices are subsequently labeled by the symbols from the vocabulary lID, the 
first vertex is labeled by the symbol I, the second (if it is still unlabeled) by J, and 
so on. If we during this process meet a vertex already labeled, we use in the formation 
of string its label assigned in the preceding stage of traversing. The resulting string 
of symbols 

(18) 

where M l' M 2, ... , M 2n+ 1 E lID, unambiguously determines the given EA W. The 
pair M 1M2 determined the first edge (or loop if M 1 = M 2) evaluated by -1, the 
next pair M 2M 3 determines the second edge/loop evaluated by + 1, and finally, 
the last pair M 2nM 2n + 1 determines the last edge/loop of the given EA W evaluated 
by +1. If M j = M 2n + j , then the EAW is closed, in the opposite case (i .e. Ml =!= 

=!= M2 n + l ) the EAW is open . 

Let us denote all the possible strings that can be formed for a RG as SI' S2, . .. , Sp. 
Here we have to note that not all of these strings cOHesponds to different EA Ws 
on the given RG. In particular, if an EA W is closed , then we have usually few pos­
sibilities in choising the first vertex, a closed EA W may be represented by few dif­
ferent strings. Hence, in order to get a canonical indexing (or labeling by the symbols 
of lID) of the RG, we postulate that the canonical indexing of the reaction graph 
is realized by an EA W which produces the smallest string (let us have two string 
S = M j M 2 ... M2n+1 and Sf = M;M; ... M;n+l' if M j < Mj for an index 1 < 
< j < 2n + 1 and Mk = M~ for all k = 1,2, . .. , j - 1, then we say that the string S 
is smaller than Sf, formally S < Sf, this process is called the lexicographical ordering 
of strings). In the case when we have obtained two or more smallest identical strings 
for different indexing of vertices, it is obvioils that this is caused by an existence 
of topological equivalence among the vertices forming a subset of V. Therefore. 
for highly symmetric RGs the canonical indexing of its vertices should be accom­
panied with the proper permutations of these indices, applying such a permutation 
to a fixed indexing of the RG we get another indexing which is determined by the same 
smallest string as the first one. 

Now we turn our attention to the problem to canonize the direction of chemical 
transformations. Let a chemical transformation (I) be determined by a RG R, its 
reverse counterpart (7) is determined by N. The canonical indexing of R (N) is defined 
by the smallest string S (S). Then the canonical direction is determined in accordance 
with the property which transformation (I) or (2) produces a smaller string. In parti-
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cular, if S < S (s < S), we postulate that the transformation G 1 =:> G1) corresponds 
to the canonical direction. Getting S = S, we say that both these directions are 
canonically equivalent. 

The most frequently appearing chemical reactions9 in the canonical form are 
summarized in Table I, the corresponding RGs are listed in Fig. 2 to 5. 

Illustrative Example 

We shall study the following simple model chemical transformation (classified 
as the addition-elimination reaction in which the carbonyl group is replaced by the 
imino group) 

(19) 

The corresponding MGs are 

G, (20a) 

(20b) 

where we have used a trial indexing of vertices. The RGs Rand R ascribed to the 
transformations G1 =:> G2 and G2 =:> G1, respectively, are determined "diagram­
matically" as 

(2la) 

R,::.:;@_6+_
S .. 3 -

- .. 
(21 b) 

7 
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TABLE 1 

Canonical reactions 

Graph String 

2-1 IIJ 
3-1 IJK 
3-2 IIJKK 
3-3 IIJKI 
3-4 IIJKKJI 

4-1 IJKLI 

4-2 IIJJKLI 
4-3 IIJKKLI 
4-4 IIJKL 
4-5 IJKIL 
4-6 IIJKILL 
4-7 IIJKILJKK 
4-8 IIJKKJILL 
4-9 IJKLIJKLI 

Reaction Automorphisms 

Reaction graphs involving 2 or 3 vertices (ef Fig. 2) 

J + J ~l-J (IJ) 
I - J + K +-+1 + J- K (IJK) 
J + J-K~I-J + K (IJK) 
J + J- K ~ J-I-K (IJK), (IKJ) 
J + J=K +-+I= J + K (IJK) 

Reaction graphs involving 4 vertices (e/. Fig. 3) 

I-J + K - L+-+I- L + J- K (IJKL), (JILK) 
(KLIJ), (LKJI) 

J + J + K-L ~ L-I- J- K (IJKL), (JILK) 
J + J- K-L+-+ J-I-L + K (IJKL), (ILKJ) 
J + J- K + L~I-J + K - L (IJKL) 
J- I - K + L ~ J-K + I - L (IJKL), (IKJL) 
J-L + J- K ~ J- I -!-K + L (IJKL) 
J-L + J=K ~ L--J-I-K (IJKL) 
J- L+ J=K~I=J + K + L (IJKL) 
I=J + K = L+-+I= L + J= K (IJKL), (KLIJ) 

~ 

~ 

Other notations 

cf ref. 9 cf reL II 

R231 RZ4 RI 
Rll Rz 
R12 R3 
R21 RT 
R25 

RI R8 

~ 
<: 
III 

~ 
R3 ~ 
Rzo J" 

R5, R43 ~ 
R14 R14 g 
R36 ~[ 
R42 ~ 

Q< 

---- ----- - ---- ----- - ---- ----- - ---- ----- - ---- ----- - ---- ----- - ----



Reaction graphs involving 5 vertices (cf. Fig. 4) 

5-1 JIJKLMJ 1 + J- K + L- M => J- J-M + K-L (JJKLM) s: 
III 

5-2 IIJKLMM 1 + J-K + L- M => J- J + K- L + M (JJKLM) RB R9 
:; 

5-3 JJKLIJKM1 J=J + L- K - M ~ J=K + L- J-M (IJKLM), (JJKML) RI o RI2 ~ 
5-4 IJKILJKMJ L- J- J- K- M => L- J- M + KN J (JJKLM), (IKJML) R6 [ 
5-5 JJKJLMJ J- J- K + L-M <-4 L- J- M + J- K (JJKLM), (IKJML) R7 $; 

5-6 IIJKLMJ 1 + J- K + L- M => M- J- J + K - L (JJKLM), (IMLKJ) R9 RIO ~ 
5-7 lIJKLJJMM I- M + K-J- L=>J= J + K - L + M (IJKLM), (I KLKM) R37 g, 

Reaction graphs invol ving 6 vert ices (cf. Fig. 5) 
f~ 
::l 

1- J + K - L + M- N <-4J- N + J- K + (JJKLMN), (JJNMLK) R2 
o· 

6-1 JJKLMNJ Rll n 
+L- M (KLMNJJ), (LKJJNM) ~ 

(MNJJKL), (NMLKJI) l 
6-2 IIJJKLMN1 I + J + K- L + M- N => N- J- J- K + (JJKLMN), (JJNMLK) 

+M-L 
6-3 1 + J-K- L + M- N => N-J- J + K + (JJKLMN) 

+L-M 
6-4 IIJKLLMNJ 1 + J-K + L+ M-N=>N-J-J + (JJKLMN), (JNMLKJ) 

+K=L- M (LKJJNM), (LMNJJK) 

6-5 IIJKLMJNN I-N + J-K + L- M => J- J-M + (JJLKMN), (JMLKJN) R I3, R!5 
+K-L+N 

6-6 JJKJLMNLI J-J-K + M-L-N => l = L + J- K + (IJKLMN), (IKJLMN) R 16 

+M- N (IJKLNM), (JKJLNM) 
(LMNJ JK), (LMNJKJ) 
(LNMJJK), (LNM1KJ) 

6-7 IIJKLMN 1 + J-K + L-M + N => 1-J + (IJKLMN) R3, R25 
+ K-L+ M- N 

6-8 JJKLIJMNJ J=J + K-L + M- N => L- J-N + (IJKLMN), (JJMNKL) R3! I~ +K- J- M (JJMNLK), (JILKMN) 
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Using these RGs, the transformations G1 => G2 and G2 => G1 are expressed by the 
"equations" 

r-tG j 
+. 

K 

(2-1) (3-1) 

+ -

~ 

FIG. 2 

The reaction graphs involving 2 and 3 vertices (Table I) 

q·f 
K _ L 

(4-2) 

;g J + 
1 

- + 

K _ L 

+ (4-3) 

.~~+ 
1 L 

K -
(4-5) 

- + () -

K _ J + 1 L 

FIG. 3 

The reaction graphs involving 4 vertices (Table I) 

~J 
~ 

(4-7) 

(22a) 

(22b) 
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The reaction matrices Rand - R corresponding to the RGs Rand R are simply 
determined as square symmetric matrices the rows and columns of which are labeled 

FIG. 4 

~
K_ 

L J + I -
- . 

M (5-1) 

-M
G {~~~} 

(5-4) 

K~)+ _ 
+ + 

+ 1 M 
L -

(5-7) 

M 
(5 - 3) 

O~+ J M 

K + L 

(5-6) 

The reaction graphs involving 5 vertices (Table J) 

FIG. 5 

NO] - J 

- + 

M K 
+ -

L 
(6-1) 

a;t-(hJ+ Q;. N ) N · J N J 

- .. - - - -
M K M K M K 

... - + _ ... +L+ 
L L 

(6-2) (6 -3) -
(6-4) 

K~-J+ 
+ ]- _ N + 

L + 
- M 
(6-5) 

I§L ~ K+
J 

+ + 
- M 

(6 -8) 

The reaction graphs involving 6 vertices (Table J) 
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by the integer labels use in (2la) and (2Ib) 

4 

[ 0 

-2 2 
-2 0 0 

R ~ ~ 0 0 
-1 
-1 

and 

6 

o 

-1 
o 
o 

7 

0]3 1 4 
-1 5 

o 6 
o 7 

(23a) 

(23b) 

Since the atoms indexed by 6 and 7 are topologically equivalent, we can construct 
from the reaction matrix R 5!/2 ! = 60 other reaction matrices by R' = PTRP, whereP 
is a symmetric matrix corresponding to a permutation of indices (3,4, 5, 6, 7), 
the permutations differing only in a transposition of the indices 6 and 7 are taken 
as equivalent. All the matrices R, R', R", ... correspond to the RGs that are mutuaJIy 
isomorphic. Therefore, it is highly desirable to have in the mathematical model 
of organic chemistry a formal tool (algorithm) to carried out a canonical indexing 
of the RG, and simultaneously, to determine a canonical direction of the trans­
formation of two isomeric MGs G1 and G2 (i. e.to decide whether G1 => G2 or G2 => G1 

is classified as the canonical direction). In order to solve these two very series problems 
we shall use the method described in the previous section. . 

Since the RGs corresponding to standard and most frequently app~aiing chemical 
reactions are described by the RGs with relatively uncomplicated "topology", 
we can get the canonisation of RGs by making use of their simple visual inspection 
(Fig. 6). In general , mainly for the computer implementation of this problem, we use 
an algorithm to construct the Euler walk on a graph. The chosen algorithm should be 
slightly modified, we construct the EA W. The canonical form of RGs (21 a) and (21 b) 
is 

§
L_ 

I - +K 
- J + 
+ -

(24a) 

M 

K~. +L_I 
~ 

(24b) 

M 
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We see that these graphs are fuBy topologically equivalent [e.g. the graph (24a) 
may be constructed from the graph (24b) if the vertices J and K are mutually repla­
ced]. The corresponding smallest string which determines the EA Ws lllllst be equi­

vaIel~t, 

s = S = JJKLIJKMJ . (25) 

Hence, we conclude that the chemical transformation described by the RG R has no 
prefered direction, or in other words, both the directions are canonically equivalent. 
Following the RG (24a), the assigned canonical chemical reaction is 

J=J + L-K- M ¢> J=K + L- J- M, (26) 

where the double-side arrow indicates that both the directions are canonically equi­
valent. Finally, the canonical form of the reaction matrix R is 

J K L M 

( o -2 0 

l l-2 
0 2 0 o J 

R ~ : 
2 o -1 -1 K (27) 
o -1 0 o L 
o -1 0 o M 

This matrix may be simply constructed by using the string (25). Let M 1 M z be a pair 
of juxtaposed symbols of the string S, its position (reading from the left to right) is 
denoted by p E <1, 2n). Then the vertices M 1 and M z are linked by an edge (or loop 

if Ml = Mz) evaluated by (-It 

M [ J L 

t@J' '~J K@I l@K - + - + 

J +-[ : L 
- K + - L + - J + 

L '.J K· 1 I K 
+ - + - + -

I< M M 

5, 52 53 5~ 

FIG. 6 

The different EA Ws for the reaction graph Rs _ 3 (Fig. 4), only the last one gives the smallest 
string S4' In order to visualize the EA Ws we have split the vertices composed of four edges 
(vertex 6 in Fig. 1) into two subvertices connected by a vertical wavy line. The heavy dot (always 
indexed by I) represents the starting vertex for a given EAW SI = IlKLIlMLI, Sa = IlKLMJ . 
. KLI, S3 = IlKLIMKLI, Sg = IlKLlJKMI. 
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Formally, let us denote the canonical reaction matrix (27) as R(I, J, K, L, M), 
we have explicitly displayed the order of labels. Using this matrix, the reaction 
matrix (23a) is determined by 

R = PTR(I, J, K, L, M)P, (28a) 

where P is a permutation square matrix corresponding to the permutation 

p=(1 JKLM). 
J I K L M 

(28b) 

One can see, from the diagram (24a), that the RG R has two topologically equiva­
lent vertices! Land M. The original RG R(I, J, K, K, M) is fully equivalent with its 
counterpart R(I, J, K, M, L). Using the graph-theory terminology!, the RG 
R(I, J, K, L, M) has two automorphisms realized by the following two permutations 

p = (1 J K L M) and 
! IJKLM 

or diagrammatically 

1@+L:I<OOd 
- J + 
+ -

M 

P (1 J K L M) 
2IJKML 

@
M_ 

- + 1_ J + . . C-

o\< -

L 

These two RGs have the same reaction matrix, in particular, we get 

R(I, J, K, L, M) = R(I, J, K, M, L) 

= pi R(I, J, K, L, M)P2 • 

(29) 

(30) 

(31) 

In order to avoid possible misunderstandings we shall present together with the 
canonical form of the given RG also the permation providing its automorphisms, 
see Table I [we use an abbreviated form of the permutations, e.g. the permutations 
(29) are presented as PI = (IJKLM) and P2 = (IJKML)]. 

DECOMPOSITION OF REACTION GRAPHS 

In order to decompose a RG into more elementar RGs (e.g. to indicate its reaction 
mechanism via the possible mechanistic steps) that are mutually edge/loop disjoint 
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we use formally the sum operation extensively applied in preceding sections of this 
communication (see Appendix). Let us have a pair of RGs 

Rl = (V,ff, L1,I/II,{-I, +1}), 

R z = (Vz, ff2, L2, 1/12, { -1, + I}). 

The operation sum of two RGs RI and Rz 

R = RI + R2 = (V, ff, L, ~/, {-I, +I}) 

is determined by 

(32a) 

(32b) 

(33a) 

(33b) 

(33c) 

where we have to remember the RGs R 1 and R2 are edge/loop disjoint [i.e. E 1 n E2 = 

= 0 and Ll n L2 = 0, see comment below the relation (A3)J. The vertex set V is 
composed of those vertices of VI and V2 that are incident with edges/loops of ff 
and L, respectively. Finally, the mapping 1/1 is 

(33d) 

where the term x expresses either an edge or loop of RI and Rz, respectively. 

The decomposition of a RG R denotes its splitting into other RGs, e.g. 

(34) 

where the RGs on the right band side are usually classified as the elementar reaction 
grapbs (roughly speaking, these RGs are composed of two or, at most, three vertices). 
For better visualisation of the decomposition we bave found that there is very useful 
to use a notion of the so-called virtual loops 

--E-- (35) 

+ 
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Since they are presented as a pail of loops with the opposite evaluation, their actual 
impact on the resulting RG is completely cancelled. 

As an illustrative example of the above concept we have listed in Fig. 7 a few 
alternative poss ibilities how to decompose the reaction graph R4 - 1(I, J, K, L), 

R4 - 1(I, J, K, L) = RZ-l(I, J) + Rz-l(I, L) + Rl-I(K, L) 
+ RZ-I(K, J) 

and many other possibilites. 

= R3-zCK, J, I) + R3- l(I, L, K) 
RZ- I(J,1) + RZ_1(J,K) + RZ-1(L, 1) 
R2 _ 1(L,K) 
= R 3 - Z(L, 1, J) + R 3 - Z(J, K, L) 

(36) 

Let us consider a transformation Gl = Gz, using the RG R this relation is "alge­
braized" as 

(37) 

and furthermore, we assume that R is decomposed into its elementar components 
by (34). A particular reaction mechanism of Gl = Gz may be expressed by making 
use of the following sequence 

(38) 

where the indices (lXI' IXl' . '" IXI') are a permutation of the integers (1,2,,,., p). 
Although the individual components in (34) are mutually commuting, their preselected 
ordering is of the great importance if we try to affect an actual chemical mechanism. 
The first elementar is determined by Gl + Ea.! = Gil), the second by G~l) + Ra.2 = 

= G~2), and finally, the last p-th step by GY'-l) + Ra. = G~p) = G2 • From the de­
composition (34) we can form, in general, p! differ:nt mechanisms that are dif­
fering in a sequence of application of elementar RGs on the substrate graph Gl . 

For example, let us consider the mechanisms SNl and SN2 assigned to the RG 
R 4 - 1(1 , J , K , L) ; the reaction graph can be presented in two alternative ways 

0-_1+ 0-_ 1+ 

+ + o~ + + 

K - L _ K+ - L 

(39) 

(SN 1) (SN2) 
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where the heavy dot denotes the starting vertex for the oriented path of elementar 
processes. Both the mechanism are expressed by sequence of elemental' RGs, where 
the first one starts at the heavy dot. 

SNI Mechanism: 

which corresponds to the sequence of four elementar chemical reactions. 

'" 1st step: 1- J => I + J [R 2 - 1(I , J)] 

... 
2nd step: J + K - L J- K - L [R 2 - 1(K , J)] 

or-
3rd step: J- K- L =>=> J- K+ L [R 2 - 1(K, L)] 

,.., 
4th step: 1 + L => J- L 

SN2 Mechanism: 

where 

'" 1st step: 1- J + K - L => J- J- K - L [RZ-l(K, J)] 

FIG. 7 

The decomposition of the reaction graph R4 _ 1 (Fig. 3). We use the concept of yirtual loops 
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'" 2nd step: I - J-K- L => + J- K- L [R 2 - 1(I, J)] 

\f\ 

3rd step: J- K- L + 1 + J- K- L- J [R 2 - 1](I, L)] 

'" 4th step: J-K-L- J => J- K + L-J [R 2 - 1(K, L)] 

As another we shall study the RG (24a) (denoted by the label 5-3 in Fig. 4) cor­
responding to the addition-elimination reaction (19). Individual mechanistic steps 
of this reaction are assigned to the following decomposition of the RG R = R S- 3' (I J, 
K,L,M) 

L 

l~K 
~ 

M 

Algebraically 

~
L_ 

+ + - + 
I _ J + _ 

- oj, -

(41) 

M 

R S - 3(I,J,K,L,M) = R 3 - 2(K, J,1) + R 3 _ 2(J,L,K) + R 4 _ 1(J,J,K,M). (42) 

This decomposition of the RG R S - 3 corresponds to three mechanistic steps. 

1st step: Application of R3 - 2(K, J, J) 

2nd step: Application of R 3 - 2(J, L, K) 

'" L 1 
1 1 
K-J => 

(I 
M 

L-J 
1 

K-J 
1 

M 
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3rd step: Application of R 4 - 1(J, I , K, M), a pericyclic process involving 4-centre 
activated complex, gives 

K--J 

I ~I 
M\ I-L 

K=J 

+ 
M-I-L 

To conclude this section we have to stress, we are far from claiming that the 
described mechanisms are the only possible mechanistic explanations of the studied 
reaction operators. 

APPENDIX 

The sum'·o A + B (often called the disjunctive sum) of two sets A and B is defined as a set 
formed by the elements of A and B with the exception of those that belong at the same time 
to A and B. In more abstract form. using the logical operators "and" « /I.) and "or" ( V). the 
sum A + B is determined as follows 

A + B = {x; (x E A /\ X ¢ B) v (x ¢ A /\ X E B)} . 

FIG. 8 
An illustrative example of the concept of sum of two graphs 

FIG. 9. 

An illustrative example of the reaction graph 
assigned to the situation presented in Fig. 8 
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For example, for sets A = {I, 2, 3, 4} and B = {3, 4, 5, 6} we get A + B = {I, 2, 5, 6}. The 
sum of sets satisfies 

A+B=B+A, 

A + (B + C) = (A + B) + C , 

A+A=0, 

A+0=A, 

(A2a) 

(A2b) 

(A2e) 

(A2d) 

where 0 is the empty set. A set "equation" A + X = B can be "solved" with res pect to the set X 

as 

X=A+B. (A3) 

We emphasize, if the sets A and B are disjoint (A n B = 0), then the sum A + B is simply equal 
to the union A U B, i.e . A + B = A U B, for A n B = 0. 

Let us consider a pair of isomeric graphs l G l = (V, E l , L t , in). 

The slim o/ lIl oleclIlar graphs G t and G 2, denoted by G t + G 2, is determined as 

where the se ts E and L are 

(A4) 

(A5a) 

(A5b) 

and the resulting vertex set V is composed of only those vertices that are inci.Je[lt with edges and 
loops belonging to E and L, respectively. The concept of the sum of graphs is illustrated in Figs 
8 and 9. By lIsing the property (A3), the equation (A4) may be solved with respect to either the 
graph G t or G 2 , we arrive at 
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